Reduce Fuel Costs By Up To 40%

John Zink Hamworthy Combustion pioneered TrīLo Technology to create a new generation of tail gas thermal oxidizers that provide better performance and more efficient operation. Compared to conventional thermal oxidizer (TO) performance, a John Zink Hamworthy Combustion TO engineered with TrīLo Technology delivers three important advantages:

1. **Lower Fuel and Power Consumption**: Operates efficiently, reducing fuel costs up to 40% without preheating the tail gas or combustion air.

2. **Lower Operating Temperature**: Meets emissions standards at the lowest known operating temperature in the market.

3. **Lower NOx, CO and CO₂ Emissions**: Guaranteed lowest NOx and CO emissions in the industry. Reduces carbon footprint by emitting less CO₂.

Ideal For New Installations, Ideal For Retrofits

As the most state-of-the-art technology on the market, our tail gas thermal oxidizers are the smart choice for new installations. But we can also apply our exclusive TrīLo Technology to existing systems, boosting performance and increasing efficiency. Most retrofits can be completed during a normal turnaround shutdown.
Proven In The Field
One of our recent installations features four tail gas thermal oxidizers designed to treat the tail gas of four SRUs with a capacity of 2,500 metric tons per day each. Designed with our exclusive TrīLo Technology, the units can operate at a much lower temperature, providing substantial savings while still meeting emission regulations. Successfully operating at 1,200°F (650°C) versus the originally specified temperature of 1,500°F (816°C), the expected fuel savings are $2.5MM per unit in the first year of operation ($10MM USD net).

At A Glance
* Successful Start-up of Four Complete Units
* Sulfur Plant Size: 2,500 MTPD for Each Unit
* Specified Temperature: 1,500°F (816°C)
* Actual Operating Temperature: 1,200°F (650°C)
* Reduced CO₂ Emissions
* Other Emissions:
 - Specified at 1,500°F (816°C):
 - NOx: 100 ppm
 - CO: 400 ppm
 - H₂S: 4 ppm
 - Actual at 1,200°F (650°C):
 - NOx: 25 ppm
 - CO: <200 ppm
 - H₂S: undetectable